A detergent is a surfactant or a mixture of surfactants with cleansing properties when in dilute solutions. In this article, Pritish Kumar Halder defines Detergents, their structure, properties and apllication. There are a large variety of detergents; often they are the sodium salts of long-chain alkyl hydrogen sulphate or a long chain of benzene sulphonic acid. The most commonly found detergents are alkyl benzene sulfonates: a family of soap-like compounds that are more soluble in hard water because the polar sulfonate (of detergents) is less likely than the polar carboxylate (of soap) to bind to calcium and other ions found in hard water.

Definition

The word detergent is derived from the Latin adjective detergens, from the verb detergere, meaning to wipe or polish off. Detergent is a surfactant or a mixture of surfactants with cleansing properties when in dilute solutions. However, conventionally, detergent is used to mean synthetic cleaning compounds as opposed to soap (a salt of the natural fatty acid), even though soap is also a detergent in the true sense. In domestic contexts, the term detergent refers to household cleaning products such as laundry detergent or dish detergent, which are in fact complex mixture of different compounds, not all of which are by themselves detergents.

Structure and properties

Detergents are a group of compounds with an amphiphilic structure, where each molecule has a hydrophilic (polar) head and a long hydrophobic (non-polar) tail. The hydrophobic portion of these molecules may be straight- or branched-chain hydrocarbons, or it may have a steroid structure.

The hydrophilic portion is more varied, they may be ionic or non-ionic, and can range from a simple or a relatively elaborate structure. Detergents are surfactants since they can decrease the surface tension of water. Their dual nature facilitates the mixture of hydrophobic compounds (like oil and grease) with water. Because air is not hydrophilic, detergents are also foaming agents to varying degrees.

Detergent molecules aggregate to form micelles, which makes them soluble in water. The hydrophobic group of the detergent is the main driving force of micelle formation, its aggregation forms the hydrophobic core of the micelles. The micelle can remove grease, protein or soiling particles. The concentration at which micelles start to form is the critical micelle concentration (CMC), and the temperature at which the micelles further aggregate to separate the solution into two phases is the cloud point when the solution becomes cloudy and detergency is optimal.

Detergents work better in an alkaline ph. The properties of detergents are dependent on the molecular structure of the monomer. The ability to foam may be determined by the head group, for example anionic surfactants are high-foaming, while nonionic surfactants may be non-foaming or low-foaming.

Chemical classifications of detergents

Detergents are classified into four broad groupings, depending on the electrical charge of the surfactants.

Anionic detergents

Typical anionic detergents are alkylbenzene sulfonates. The alkylbenzene portion of these anions is lipophilic and the sulfonate is hydrophilic. Two varieties have been popularized, those with branched alkyl groups and those with linear alkyl groups. The former was largely phased out in economically advanced societies because they are poorly biodegradable.

Anionic detergents are the most common form of detergents, and an estimated 6 billion kilograms of anionic detergents are produced annually for the domestic markets.

Bile acids, such as deoxycholic acid (DOC), are anionic detergents produced by the liver to aid in digestion and absorption of fats and oils.

Cationic detergents

Cationic detergents are similar to anionic ones, but quaternary ammonium replaces the hydrophilic anionic sulfonate group. The ammonium sulfate center is positively charged. Cationic surfactants generally have poor detergency.

Non-ionic detergents

Non-ionic detergents are characterized by their uncharged, hydrophilic headgroups. Typical non-ionic detergents are based on polyoxymethylene or a glycoside. Common examples of the former include Tween, Triton, and the Brij series. These materials are also known as ethoxylates or PEGylates and their metabolites, nonylphenol. Glycosides have a sugar as their uncharged hydrophilic headgroup. Examples include octyl thioglucoside and maltosides. HEGA and MEGA series detergents are similar, possessing a sugar alcohol as headgroup.

Major applications of detergents

Household cleaning

One of the largest applications of detergents is for household and shop cleaning including dish washing and washing laundry. These detergents are commonly available as powders or concentrated solutions, and the formulations of these detergents are often complex mixtures of a variety of chemicals aside from surfactants, reflecting the diverse demands of the application and the highly competitive consumer market. These detergents may contain the following components:

1)surfactants

2)foam regulators

3)builders

4)bleach

5)bleach activators

6)enzymes

7)dyes

8)fragrances

Fuel additives

Both carburetors and fuel injector components of internal combustion engines benefit from detergents in the fuels to prevent fouling. Concentrations are about 300 ppm. Typical detergents are long-chain amines and amides such as polyisobuteneamine and polyisobuteneamide/succinimide.

Biological reagent

Reagent grade detergents are employed for the isolation and purification of integral membrane proteins found in biological cells. Solubilization of cell membrane bilayers requires a detergent that can enter the inner membrane monolayer. Advancements in the purity and sophistication of detergents have facilitated structural and biophysical characterization of important membrane proteins such as ion channels also the disrupt membrane by binding lipopolysaccharide, transporters, signaling receptors, and photosystem II.

Reference

https://en.wikipedia.org/wiki/Detergent